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The analogy between quantum mechanics and optics, as described in the foregoing paper [1], is used for the analysis of the 
total reflexion phenomenon. As an application, the photon propagation parameters in optical fibers is investigated. Also the 
energy transfer in an optical coupler is analysed. 
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1. Introduction  
 
In the present paper we will take the advantage of 

using the powerfull mathematical tool of the quantum 
mechanics to explain and to analyze quantitatively, in a 
most simple and rapid way, some otherwise complicated 
optical phenomena [1]. Specifically, by dealing with the 
problem of guided propagation of the light through optical 
circuits [2], and particularly in optical fibers, we will 
exclusively appeal to the photon concept only, avoiding 
any use of Maxwell equations for this purpose. The 
quantitative study has been conducted for a phosphate 
glass optical fiber due to its  excellent properties as host 
material for optical amplifiers [3] 

 
2. Total reflection on a dielectric interface 
 
If it is desired that the photon should not cross the 

separation surface between two dielectric media (having 
the refraction index 1n  and 2n  respectively), it is 

necessary that (see Fig.1 [1]) 2xp  to be imaginary 
(corresponding to the evanescent wave). In this case, from 
Eq. (19) of our previous paper [1], we get 
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For the sake of easy computation, in the following analysis 
we shall consider a rectangular phosphate glass fiber, 
Fig.1, but the main conclusions remain valid also for the 
case of a circular cross section. In practice we meet two 
situations: a) the refraction indices  1n   and  2n  are both 
complex quantities (the case  of metals) so that f is a 

complex quantity too; b) the refraction indices  1n   and  

2n  are both real quantities, hence f  is real. In the last 
case (b) from Eq. (1) we obtain an imaginary momentum 

2xp  if  
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where the incidence angle 1θ  is real, so that 1sin 1

2 ≤θ . 
We now see that the last two conditions  Eq. (3) and Eq. 
(4) can be fulfilled only if 
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Notice that in the case (a), when the refraction indices 1n   

and  2n  are complex, the two conditions (5) remain still 

valid, this implying that the imaginary parts of  1n  and  

2n   should be as low as possible.  We also specify that, in 
the case of total reflection, the wave propagation at the 
interface between the two media is equivalent to the 
propagation through a thin metallic layer (see reference [5] 
in [1]). 
 

 
3. Glass fiber caracteristics 
 
In this section the major propagation characteristics of 

electromagnetic waves through an optical fiber will be 
derived exclusively on the basis of the photon concept. Let 
us consider a step-index fiber of rectangular cross section 
[4]. Thus, as it is well known, for any given wave guide 
mode, the transverse wave number is given by the 
corresponding critical wave number, namely  

 
  cx kk =1                                       (6) 
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For instance, for a rectangular wave guide, as shown in 
Fig.1a, working in the fundamental TE10  mode, we have 

akc 2/π= . The total reflection of the signal occurs at 
the interface ax ±=  (Fig. 1.b) of the core with the 
cladding [5].  
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Fig. 1. a) Rectangular glass fiber; b) The glass fiber  

transversal potential. 
  

 
Taking into account the relationships between 

momentum and wave number, kp h= , photon energy 
and momentum, pcE = , and the expression 

2,12,102,1 cosθnppx = , see [1], we obtain 
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relation between the transverse wave number 1xk  and the 

photon incidence angle, 1θ ,  upon the lateral wall of the 
considered light guide, namely 
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On the other hand, using Eq.1, for the transverse wave 

number within the fiber cladding we have  
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Let us consider the photon propagating through the optical 
fiber and meeting the transverse potential illustrated in 
Fig.1b. The corresponding wave functions built up in the 
fiber transverse section can be either even or odd, as 
presented in the following table.  

Odd functions Even functions 
 xAeχ=Ψ1   xAeχ=Ψ1  

 xkB x12 sin=Ψ   xkB x12 cos=Ψ  

 xCe χ−=Ψ3   xCe χ−=Ψ3  
 

These represent proper functions of the Helmholtz 
operator, as shown in Eq.8 of [1]. The resulting continuity 
conditions for ax −=  lead to the following relationships 
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which, by division, become the following two 
transcendent equations [6] 
 
 

       Odd functions      Even functions 
 ( )pakk xx 11 cot−=χ   ( )akk xx 11 tan=χ  

 
 

The resulting transcendent equations depend, via 1xk , 

on the photon incidence angle on the lateral wall, 1θ  [5]. 
Once determined this angle, we have also the 
corresponding transverse wave number in the core and in 
the cladding of the optical fiber. In continuation below will 
be discussed the numerical results obtained for an optical 
fiber having the parameters 2502 =a μm, 41 =n  and 

5.32 =n  [7], for the frequency range 180-450 GHz and 

considering the cladding thickness ( )ab −  high enough 
as to neglect its penetration. 
 
 

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1  Odd Propagation Mode
2  Even Propagation Mode

In
ci

de
nt

 a
ng

le
 [r

ad
]

x1011 Hz

1

2

  
 

Fig. 2.  The incidence angle 1θ  in terms of the frequency  for 

2502 =a  μm, 41 =n  and 5.32 =n . 
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Fig. 2represents the incidence angle 1θ  in terms of the 
frequency as computed with the help of Eq. 7. Further, the 
penetration depth  

        
χ

δ 1
=                                      (10) 

 
presented in Fig. 3.  has been computed with the help of 
Eq. 9 and the pair of  the values energy – incidence angle 
from Fig. 2. The penetration depth can be increased by the 
presence of defects within the cladding [8]. Finally, the 
group velocity given in Fig. 5 in terms of frequency has 
been computed from the expression 
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 Fig. 3.  Penetration depth in terms of frequency:  

2502 =a μm, 41 =n  and 5.32 =n  
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Fig. 4.  Group velocity in terms of frequency:  
2502 =a μm, 41 =n  and 5.32 =n . 

 

As the last two figures indicate, the penetration depth 
and the group velocity decrease drastically with the 
frequency in the investigated domain for the odd 
propagation modes, in contrast to the even ones.  

 
4. Optical coupling  
 
Last but not least let us consider an optical coupling 

device as schematized in Fig. 5 with its associated 
potential in Fig. 7. The corresponding wave functions 
within the five zones of the potential are tabulated below.  
 

Zone Wave function 
I  x

I Aeχ=Ψ  
II ikxikx

II CeBe −+=Ψ  
III  xx

III EeDe χχ +=Ψ −  
IV  ikxikx

IV GeFe −+=Ψ  
V  x

V He χ−=Ψ  
 
 
 

 
                 

Fig. 5.  Optical coupler: 5001 =b  µm, 502 =b µm. 
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Fig. 6. The potential within the optical coupler cross section. 
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The continuity requirements for these five wave 
functions at the four discontinuity locations of the 
potential allowed us to compute the corresponding photon 
number or electromagnetic energy density distribution in 
the transverse section, as given by the square of the wave 
function modulus, |ψ|2. In the following computation 

example we will consider a coupler built of  fibers having 
a core breadth of  a = 250 µm and a refraction index 

41 =n , and embedded in a dielectric medium of 

refraction index 5.32 =n . 
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Fig. 7.  | ψ |2 by optical fiber rapprochement: a) b = 500 µm b) b = 400 µm, c) b = 300 µm, d) b = 200 µm, e) b = 100 µm, 
 f) b = 50 µm. 
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Fig. 8.  | ψ |2 by optical fiber moving off: a) b = 100 µm,  b) b = 200 µm, c) b = 300 µm, d) b = 400 µm, e) b = 500 µm. 
 

This computation has been performed for two distinct 
cases of primary to secondary optical fiber energy transfer, 
namely, for rapprochement first, Fig. 7, and then by 
moving them off, Fig. 8. Generally, at distances greater 
than 500 µm between the two fibers, the energy transfer 
between them becomes  negligibly small. The minimal 
distance between the fibers has been limited to 50 µm. 
Also the coupling length as measured along the Oy axis 
has been choosen smaller than the wavelength within the 
guide. The last requirement was necessary in order to 
ensure a transient mode in the secondary fibre, thus 

avoiding the installment of a stationary wave within the 
fiber cross section. 

 Let us comment in more detail the energy transfer 
occurring in the considered optical fiber coupler as it is 
suggested by the |ψ|2 distribution. Thus, in the case 
illustrated in Fig. 7-f, the secondary wave guide moves 
towards the primary one from 500 µm up to 50 µm. It may 
be noticed that at first the maximum of the energy centered 
in the primary fiber is repelled by the secondary fiber 
(toward left in Fig. 7 b-c) as if the system would manifest 
an inertial behavior. However, by continuing the 
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rapprochement (Fig. 7 d-f), it may be noticed the 
continuous increase of the transferred energy within the 
secondary fiber, accompanied by a displacement of the 
energy maximum in the primary fiber in the reverse 
direction, towards the secondary fiber. As far as the case 
illustrated in Fig. 8 e is concerned, when the optical fibers 
are moved off from each other from 50 µm up to 500 µm, 
it may be observed that the energy maxima in both fibers 
manifest a reciprocal repulsion (Fig. 8 c-d), until the fibers 
eventually become decoupled and the corresponding 
energy maximum occupies its axial position in each fiber. 

 
 
5. Conclusions 
 
The present paper represent an application of the 

calculus proposed in our preceding article [1]. It is 
demonstrated how the information on the electromagnetic 
energy distribution in the fibers of an optical coupler can 
be obtained from the sole photon concept, without any 
appeal to Maxwell equations or from any explicit use of 
the electric and magnetic field concepts. The 
computational simplicity is due to the reduction of the 
number of variables from six in the case of Maxwell 
equations (three for each of the two fields) to a total of 
only three, namely the amplitudes of the wave function for 
three directions. As a rule, in the practice of optical 
circuits and optoelectronic devices the major interest 
resides in the knowledge of the energy distribution. We 
believe that the present paper meets all the needs on this 
matter.  
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